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Abstract—We point out that, with a simple modification of reasoning commonly used, one can get, easily,
thermodynamic restrictions on constitutive equations for generalized momenta.

1. INTRODUCTION

Various theories of structured continua involve constitutive equations for generalized
momenta. Some, but not all writers assume these to depend linearly on generalized velocities.
For example, Cowin and Leslie[1] consider more general possibilities for Cosserat continua,
using considerations of invariance to obtain some restrictions on the form of such constitutive
equations. Similarly, Hills and Roberts[2] introduce more general forms, in their theory of
superfluids. They employ ideas of invariance, and the Clausius-Duhem inequality, to get
restrictions on the various constitutive equations considered. In dealing with theories of
structured continua, I have got into the habit of using a line of thought, not used by them, which
makes it rather routine to get thermodynamic restrictions on constitutive equations for
generalized momenta. Also, it played a role in developing the general transformation theory for
various continuum theories presented by Ericksen[3]. My purpose is to elaborate this.

Typical continuum theories involve a list of equations of a common form. The reader might
find it easier to recognize the form to be given, if he thinks in terms of three-dimensional
theories, employing the time ¢ and rectangular Cartesian material or spatial coordinates x’
(i=1, 2, 3) as independent variables. As a personal matter, I use the same format when using
curvilinear coordinates, or when dealing with mechanics of surfaces, etc. The form is

%=Ti,i+Fi+Fft a=1,"‘?n’ (1)

with P, interpreted as density of (generalized) momenta, T: as a kind of generalized stress, F'
as an internal body force, all things for which constitutive equations are needed. Here, FE
covers external body forces of external origin, like the gravitational effect produced by another
massive body, not to be given by a definite constitutive equation. Commonly, we split these
equations into subsets, each subset being identified with components of some tensor. How we
do this depends on which special kind of theory we are considering, so I won’t belabor this. In
the work of Cowin and Leslie[1], for example, these take the form of a vector equation, and a
second-order tensor equation. Also, if we are using spatial coordinates, T*, will include analogs
of Reynold’s stresses, described more explicitly below.

To put these in a different form, more like what is likely to be seen in some of the literature,
we need another equation, covering conservation of mass. A representative form is

o Ny =
o T, i 0, 2

where p is the mass density, v =0 if we are using material coordinates, and v* are the usual
velocity components, if we are using spatial coordinates. For simplicity, we exclude mixture
theories, which involve additional mass balances, covering chemical reactions between different
constituents; and other complications. The theory of Hills and Roberts[2] is a kind of mixture
theory, so our format will not quite fit their theory. Then, we can introduce the material
derivative, for any function f, viz.

Y
f=5ptfav) ®)

315



316 J. L. ERICKSEN

write
P, = ppo, )
and juggle (1) into the form
pp.=toi+ Fi+FZ. ()

Here, t! is more like what we commonly consider to be the stress tensor, it and T being
related by

T, =t,— Py =t,~pp,v', (6)

the difference being the analog of Reynolds’ stress. Granted (2), (1) and (5) are equivalent, so one
can use whichever seems most convenient.

To make any use of thermodynamics, one needs an energy equation. A typical form of this
is

dE
—‘;?—E,i+E 0

where E is the (total) energy density, E' is the energy flux, and F covers any volume sources.
In some of the more general theories, the decomposition of E into an internal energy and
kinetic energy is a somewhat ambiguous matter and, I think, it is better to get out of the habit.
Generally, we detail (7) in a form suggested by the first law of thermodynamics, writing

E = pe,
E'=—pev' +tiw*— Q)

F=Fw*-R,
®
using the summation convention for Greek as well as Latin indices. Here, the w* represent
generalized velocities. Generally, v' will be included among the w* or some ‘simple a priori
relation will be assumed to relate them, so v’ and w* are not really considered as independent

variables. Also, Q' is interpreted as the heat flux, and R represents radiation. Then, using (2)
and (5), we use (8) to reduce (7) to the form

pé = t, we;+ p(p, — Fi) w* - Qi,i -R L)

Another form is suggested by the transformation theory described by Ericksen[3]. In (8), we
can use (6) to replace ¢’ by T, which gives

E'=pav'+ Tiw* - Q', (10)
where
a=pw*—e )

is interpretable as action per unit mass. In a rather natural way, this brings action into the
picture. Following the lead, we generate an equation for a, which is easily found to be

pi+ Tow— P, 20— Flw*= Qi+ R, (12
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Alternatively, one can use (11) to rearrange (9) into an equivalent form, viz.
pd +tiw®;—pp,w*— Fiw*= Q' +R, (13)

but it seemed worthwhile to mention one of the things which motivated me to introduce action.
Commonly, we will also appeal to some version of the second law. For simplicity, I will use
the Clausius-Duhem inequality, a rather common choice, viz.

i +(QY8)+ RI§=0, (14)

where 7 is entropy per unit mass, and 8 > 0 denotes absolute temperature. Following a line of
thought which has become rather standard we then set

b=a+én, 15)
a substitution not entirely unlike (11), reducing (13) to the inequality
pb + tiw*; — pp,w* — Flw* — pné = Q'd /0. (16)

Any definite proposal concerning treatment of generalized momenta must be regarded as
speculative, but one line of thought seems to me sensible. With (16), it is natural to consider
giving constitutive equations for b, t,, p,, etc. requiring that these be consistent with (16) for all
processes. With (11) and (15), we will get, indirectly, a constitutive equation for e. With some
simpler kinds of constitutive assumptions, (16) leads to equations of the form

Do = dbldw®, = 3b/36. (17

Then, a becomes a Legendre transform of b, ¢ a Legendre transform of a, in accord with
experience for conservative systems. The various writers who have been willing to assume (17),
have, in effect, cancelled out some terms in (16). Cowin and Leslie[1] did not, so one can use
(16) to get additional restrictions on their constitutive equations for momenta, for example.
With (16), there is the suggestion that, sometimes, part of p, might contribute to dissipation. I
have not thought of a compelling reason to exclude the possibility, or an argument making
plausible that the possibility is real.

Clearly, the idea of replacing energy by action can be applied to theories which don't quite
fit the above format, such as those involving generalizations of the Clausius-Duhem inequality
of the kind preferred by Miiller[4]. Some adjustments of the format are required, to include
mixture theories.
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